Exponential Funtions

Name: Unit 8 Day 6

Students can:

✓ Target #1: Use the properties of exponents to write an equivalent form of an exponential function to reveal and explain specific information about rate of growth or decay

WARM-UP:

Simplify each expression.

$$2. \left(5^{\frac{1}{6}}\right)^{6x} = 5 \left(5^{\frac{6}{6}}\right)^{6x}$$

MINI LESSON:

Exponential Growth:

$$y = a \cdot (1+r)^{x}$$

$$a = \underbrace{\text{Sturtyg}}_{r = \underbrace{\text{increese}}_{x = + ihe}} \text{calue}$$

Exponential Decay:

$$y = a \cdot (1 - r)^{x}$$

$$a = \underbrace{(t - r)^{x}}_{r = -r} \underbrace{$$

Example 1

A town starts with 500 people and grows by 25% every year.

1. Choose the function that represents this situation.

a.
$$y = 25 \cdot (500)^x$$

b. $y = 25 \cdot (0.500)^x$

c.
$$y = 500 \cdot (0.25)^x$$

d. $y = 500 \cdot (1.25)^x$

2. At what rate does the number of people in the town increase by every month?

Example 2

A certain species of monkeys is dying off in a forest each year. The monkey population is currently 24,000 and is projected to decrease by 12% each year. 1 - .12 - .88

1. Choose the function that represents this situation.

a.
$$y = 24,000 \cdot (1.12)^x$$

b. $y = 88 \cdot (0.24000)^x$

c.
$$y = 24,000 \cdot (0.88)^x$$

d. $y = 12 \cdot (24,000)^x$

2. What percent of the population is dying off each month?

Example 3

You invest \$1000 at a bank that pays an annual interest rate of 8%.

1. Choose the function that represents this situation.

a.
$$y = 8 \cdot (1000)^x$$

b. $y = 1000 \cdot (1.08)^x$

c.
$$y = 1000 \cdot (0.92)^x$$

d. $y = 8 \cdot (0.1000)^x$

2. What would your equivalent monthly interest rate be?

Example 4

There are 2 mice in a barn. The number of mice is growing by 40% each year.

1. Choose the function that represents this situation.

(a.
$$y = 2 \cdot (1.4)^x$$

b. $y = 2 \cdot (0.4)^x$

c.
$$y = 40 \cdot (2)^x$$

d. $y = 40 \cdot (0.2)^x$

b.
$$y = 2 \cdot (1.4)^x$$

2. At what rate are the mice growing by every 6 months?

WORKSHOP:

Example1

The population of the town Smithville in 2003 was estimated to be 35,000 people. The number of people in the town increases by 25% each year.

1. Choose the function that represents this situation.

a.
$$y = 35,000 \cdot (0.25)^x$$

b.
$$y = 25 \cdot (35,000)^x$$

c.
$$y = 0.25 \cdot (35,000)^x$$

d.
$$y = 35,000 \cdot (1.25)^x$$

2. At what rate does the number of people in the town increase by each month?

Example 2

A car is purchased for \$14,000. The value of the car decreases by 33% each year.

1. Choose the function that represents this situation. a. $y = 14,000 \cdot (1.33)^x$

b.
$$y = 0.67 \cdot (14,000)^x$$

c.
$$y = 14,000 \cdot (0.67)^x$$

d. $y = 33 \cdot (14,000)^x$

2. Find the rate that the value of the car is depreciating by every 6 months.

Example 3

Marisa invests \$300 at a bank that offers an annual interest rate of 15%.

1. Choose the function that represents this situation.

a.
$$y = 15 \cdot (300)^x$$

b. $y = 300 \cdot (1.15)^x$

- c. $y = 300 \cdot (0.85)^x$ d. $y = 15 \cdot (0.300)^x$
- 2. What would Maria's equivalent monthly interest rate be?

Exponential Funtions

Name:

Unit 8 Day 6 Homework

c) $y = 25,000 \cdot (0.20)^x$ d) $y = 0.20 \cdot (25,000)^x$

1) Matt bought a new car at a cost of \$25,000. Each year, the value of the car depreciates at a rate of 80%.

- 1. Choose the function that represents this situation.
 - a) $y = 80 \cdot (25,000)^x$

b)
$$y = 25,000 \cdot (0.80)^x$$

2. At what rate is the car depreciating each month?

2) Jose invests \$600 at a bank offering an annual interest rate of 10%.

1. Choose the function that represents this situation.

(a)
$$y = 600 \cdot (1.10)^x$$

h)
$$v = 10 \cdot (600)^x$$

b)
$$y = 10 \cdot (600)^x$$

2. What would the equivalent monthly interest rate be?

3) You invest \$2400 at a bank that pays an annual interest rate of 7%.

1. Choose the function that represents this situation.

a)
$$y = 7 \cdot (2400)^x$$

b) $y = 2400 \cdot (1.07)^x$

c) $y = 2400 \cdot (0.07)^x$

c) $y = 600 \cdot (0.10)^x$

d) $v = 600 \cdot (10)^x$

- d) $y = 0.07 \cdot (2400)^x$
- 2. What would the equivalent interest rate be for every 6 months?

4) In 1985, there were 300 cell phone subscribers in the town of Centerville. The number of subscribers increased by 18% each year.

1. Choose the function that represents this situation.

(a)
$$y = 300 \cdot (1.18)^{x}$$

b)
$$y = 300 \cdot (0.18)^x$$

c)
$$y = 300 \cdot (0.82)^x$$

d)
$$y = 18 \cdot (300)^x$$

2. At what rate did the number of subscribers increase for every 6 months?

5) You have inherited land that was purchased for \$20,000 in 1960. The value of the land increased by a rate of 6% each vear.

1. Choose the function that represents this situation.

a)
$$y = 20,000 \cdot (0.06)^x$$

b)
$$y = 6 \cdot (20,000)^x$$

c)
$$y = 20,000 \cdot (6)^x$$

d)
$$y = 20,000 \cdot (1.06)^x$$

2. How much would the value of the land be increasing by every 3 months?

6) Howard decided to collect Star Wars figurines. He started off with 2 figurines and collects 5 more each week. Write a function rule to describe the situation. Is this an example of a linear or exponential function?

Weeks	# of figurines			
0	2 <	1		1.7.
1	7 /	13	9-5×	+ -
2	12_	+5	1	1
3	17	+5	W /	\
4	22	, 3	rafe	staring
			atrange	starting value

7) Peggy started off the year with \$15,000. She spends half of the money remaining in her account each month and does not put any money back. Write a function rule to describe the situation. Is this an example of a linear or exponential function? How long will it take Peggy to spend all of her money?

	ALC: STREET, PAR	_	
_	Months	\$ in account],
	0	15000	> x 2
	1	7500	
	2	3750) × 1
	3	1875	> x {
	4	937.5	/ ~ ~ ~ ~

8) A scientist was studying the rate of bacteria increase in a culture they had taken. The culture contained 200 bacteria when the study began. The scientist noticed the bacteria growing at a rate of 4 bacteria per second. Write a function rule to describe the situation. Is this an example of a linear of exponential function?

Seconds	bacteria	
0	200	740
1	204	'
2	208	>+0
3	212	244
4	216	>+0

9) On Halloween night, Sam was passing out candy. She started out with 225 pieces of candy. Being the generous person she was, she gave each trick-or-treater 5 pieces. Write a function rule to describe the situation. Is this an example of a linear or exponential function? How many trick-or-treaters will be able to stop at Sam's house?

Trick-or-treaters	candy	
0	225	\~5
1	220	K "
2	215	17-3
3	210	>-2
4	205	